1. Obtain a linear regression equation for the data to predictthe mean temperature values for any given CO2 level. How good isthe linear fit for this data? Explain using residual plot andR-square value. To draw residual plot, compute the estimatedtemperatures for every value of the CO2 level using the regressionequation. Then compute the difference between observed (y) andestimated temperature values (called residual; ). Plot theresiduals versus CO2 level (called a residual plot).
320.09 | 8 |
321.44 | 9.29 |
322.17 | 9.39 |
323.09 | 8.61 |
324.68 | 8.95 |
325.74 | 8.36 |
326.33 | 9.11 |
327.52 | 8.43 |
329.78 | 8.39 |
330.24 | 8.18 |
331.18 | 9.06 |
332.09 | 9.12 |
333.88 | 8.11 |
335.43 | 7.51 |
336.83 | 7.42 |
338.78 | 7.78 |
340.17 | 8.2 |
340.99 | 8.6 |
342.97 | 8.9 |
344.23 | 8.04 |
345.94 | 7.18 |
347.26 | 7.89 |
349.06 | 7.66 |
351.56 | 8.9 |
352.91 | 9.68 |
354.21 | 9.98 |
355.54 | 8.88 |
356.29 | 9.46 |
356.97 | 8.83 |
358.69 | 10.29 |
360.71 | 10.27 |
362.41 | 8.01 |
363.53 | 9.28 |
366.64 | 9.3 |
368.16 | 9.78 |
369.45 | 9.88 |
371.12 | 9.6 |
373.24 | 9.73 |
375.88 | 10.35 |
377.6 | 9.48 |
379.87 | 9.53 |
381.89 | 9.94 |
383.79 | 10.59 |