Here we have data:
|
A1 |
A2 |
A3 |
P1 |
19 |
19 |
37 |
P1 |
36 |
35 |
6 |
P1 |
40 |
22 |
28 |
P1 |
30 |
28 |
4 |
P1 |
4 |
1 |
32 |
P1 |
10 |
27 |
16 |
P1 |
30 |
27 |
8 |
P1 |
5 |
16 |
41 |
P1 |
24 |
3 |
29 |
P1 |
21 |
18 |
18 |
P2 |
39 |
30 |
51 |
P2 |
18 |
47 |
52 |
P2 |
32 |
6 |
43 |
P2 |
22 |
27 |
48 |
P2 |
16 |
44 |
39 |
P2 |
2 |
26 |
33 |
P2 |
36 |
33 |
56 |
P2 |
43 |
48 |
43 |
P2 |
7 |
23 |
40 |
P2 |
16 |
21 |
51 |
Excel output;
Anova: Two-Factor With Replication |
|
|
|
|
|
|
|
|
|
|
|
SUMMARY |
A1 |
A2 |
A3 |
Total |
|
|
P1 |
|
|
|
|
|
|
Count |
10 |
10 |
10 |
30 |
|
|
Sum |
219 |
196 |
219 |
634 |
|
|
Average |
21.9 |
19.6 |
21.9 |
21.13333 |
|
|
Variance |
157.6556 |
117.8222 |
177.6556 |
141.8437 |
|
|
|
|
|
|
|
|
|
P2 |
|
|
|
|
|
|
Count |
10 |
10 |
10 |
30 |
|
|
Sum |
231 |
305 |
456 |
992 |
|
|
Average |
23.1 |
30.5 |
45.6 |
33.06667 |
|
|
Variance |
191.8778 |
171.8333 |
51.15556 |
219.4437 |
|
|
|
|
|
|
|
|
|
Total |
|
|
|
|
|
|
Count |
20 |
20 |
20 |
|
|
|
Sum |
450 |
501 |
675 |
|
|
|
Average |
22.5 |
25.05 |
33.75 |
|
|
|
Variance |
165.9474 |
168.4711 |
256.1974 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
Source of Variation |
SS |
df |
MS |
F |
P-value |
F crit |
Sample |
2136.067 |
1 |
2136.067 |
14.76544 |
0.000323 |
4.019541 |
Columns |
1391.7 |
2 |
695.85 |
4.810023 |
0.011956 |
3.168246 |
Interaction |
1273.633 |
2 |
636.8167 |
4.401959 |
0.016943 |
3.168246 |
Within |
7812 |
54 |
144.6667 |
|
|
|
|
|
|
|
|
|
|
Total |
12613.4 |
59 |
|
|
|
|
Here we have sufficient evidence to reject the null hypotheses
because F-observed value (14.76544) is grater than F-critical value
(4.019541) so, it is in the rejection region.
Conclusion: we can say that difference in the mean value.