Regression Analysis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r² |
0.390 |
n  |
15 |
|
|
|
|
r  |
-0.625 |
k  |
1 |
|
|
|
|
Std. Error  |
30.932 |
Dep. Var. |
Sales |
|
|
|
|
|
|
|
|
|
|
|
ANOVA
table |
|
|
|
|
|
|
|
Source |
SS  |
df  |
MS |
F |
p-value |
|
|
Regression |
7,966.4886 |
1  |
7,966.4886 |
8.33 |
.0128 |
|
|
Residual |
12,438.5207 |
13  |
956.8093 |
|
|
|
|
Total |
20,405.0093 |
14  |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Regression output |
|
|
|
confidence interval |
|
variables |
coefficients |
std. error |
  t (df=13) |
p-value |
95% lower |
95% upper |
std. coeff. |
Intercept |
177.7012 |
|
|
|
|
|
0.000 |
Csales |
-3.5446 |
1.2284 |
-2.885 |
.0128 |
-6.1984 |
-0.8908 |
-0.625 |
The regression equation is Sales = 177.7012 - 3.5446 *
Csales
Hypotheses: β1 = 0 versus Ha: β1 ≠0
Critical t- score (α = 0.02, Df = 13) = ± 2.6503
p- value = 0.0128
Since 0.0128 < 0.02, we reject Ho
Conclusion: Sales is significantly affected by Csales.