The x-component of the speed is,
   ux = (0.82c)
cos520Â Â
         (1)
The y-component of the speed is,
   uy = (0.82c) sin520
              (2)
From given problem, we have
β = v/c
  = 0.74
          Â
v = 0.74 c
Factor
γ = 1/√[1-(v2/c2)]
    = 1.49
From Lorentz transformation,(relativistic velocity
transformation),
            Â
ux' =
(ux-v)/[1-(vux/c2)] ..........
(3)
              uy'
= (uy)/(γ)[1-(vux/c2)] Â
.......... (4)
Substitute the eq (1), in eq (3), we get
  ux' = (((0.82c)
cos520)-(0.74c))/[1-((0.74c)((0.82c) cos520
)/c2)]
       = -0.273
c
..............................................................................
Substitute the eq (2), in eq (4), we get
  uy' = (((0.82c)
sin520)/(1.49)[1-((0.74c)((0.82c) sin520
)/c2)]
       = 0.831 c
.................................................
Therefore velocity u = √( ux')2 +
(uy')2
                            Â
= 0.875 c
............................................................
Angle θ = tan-1( uy'/ux')
          Â
= -71.81 0