Delta Sonic is a car wash provider in Western New York. VIP Customers at their Buffalo,...

50.1K

Verified Solution

Question

General Management

Delta Sonic is a car wash provider in Western New York. VIPCustomers at their Buffalo, NY location sign up for unlimited carwashes and a separate line & dedicated car wash services thosecustomers (i.e. a single-server single-queue model). Assume VIPcustomers arrive every 10 minutes on average and that theirinter-arrival time is exponentially distributed. Also, assume thatprocessing (washing) time is the sum of two components:

A constant (i.e. not random) basic washing time that isexactly 4 minutes.

A random extra-service time that is exponentially distributedwith mean time of 2 minutes.

In Excel, simulate the arrival times and processing times of VIPcustomers at this car wash using 2,000 sample customers. Using theresults of your simulation, calculate the percentage of VIPcustomers that were in the process (i.e. waiting+washing) forlonger than 12 minutes. Press F9 to rerun your simulationseveral times and record the results for the percentage ofcustomers who wait longer than 12 minutes. Using the median ofthese recorded percentages as your estimate of the percentage ofcustomers expected to wait longer than 12 minutes, enter thatprobability here as a two digit decimal e.g. 0.25, 0.45, 0.99,etc.)

Answer & Explanation Solved by verified expert
4.1 Ratings (837 Votes)
AnswerFirst I have Prepared Simulation data for 2000 Sample withConstant Arrival time Constant Wash Time and Random Extra ServiceTimeRandom Extra Service Time Calculation In MS ExcelNORMINVRANDI1I2I1 Mean value given 2 MinutesI2 Standard Deviation Value 15 Minutes Considered forGenerating Random Number1st Random number generated in one cell then dragged to allcell total 2000 cellLets do Normality test for the Total Time include Arrival TimePlus Constant Wash Time and Extra Service Time then for totaltime as P Probability value is more than 005 therefore Totaltime data is normally distributedNormality Check for Total Time Data in MiniTab 2017 Stat basic Statistics Normality Test select Variable Total Time Anderson darling Normality Test will come below likeNow Calculated Mean Time and Standard deviation for Total Timedata where In MiniTab 2017 Path StatBasicStatisticsDisplay Descriptive StatisticsI will get result likeMean Time for Total Time data 15994Standard deviation for Total Time data 1522Now In Minitab 2017 Go to Graph Tool Bar ProbabilityDistribution PlotView ProbabilityDistribution Normal asTotal time is Normally Distributed Select Mean 15994 Standarddeviation 1522 Keeping X Value Right Tail 12 will get Resultlike belowSo The percentage of VIP customers that were in theprocess ie waitingwashing for longer than 12 minutes is 09957X 100 9957 and The Probability is 99Simulation data of 2000 Sample in MS Excel format herecant be uploaded so only 500 samples data presented for reference which used for above calculationSl NoArrival TimeMinutesConstant Wash timeExtra    See Answer
Get Answers to Unlimited Questions

Join us to gain access to millions of questions and expert answers. Enjoy exclusive benefits tailored just for you!

Membership Benefits:
  • Unlimited Question Access with detailed Answers
  • Zin AI - 3 Million Words
  • 10 Dall-E 3 Images
  • 20 Plot Generations
  • Conversation with Dialogue Memory
  • No Ads, Ever!
  • Access to Our Best AI Platform: Flex AI - Your personal assistant for all your inquiries!
Become a Member

Other questions asked by students

Q

^AORD RIO ANZ WES TLS Date Adj Close Adj Close Adj Close Adj Close Adj Close 31/1/13 5120.4 66.36 19.84806 19.57102 3.212754 28/2/13 4979.9 67.05 19.71675 19.69255 3.255187 31/3/13 5168.6 57.2 22.00425 21.24546 3.594419 30/4/13 4914 55.8 19.03257 19.22232 3.421195 31/5/13 4775.4 55.18 20.2205 19.39867 3.442847 30/6/13 5035.7 52.37 21.05536 19.86891 3.601637 31/7/13 5125.3 57.51 21.00583 19.91794 3.536677 31/8/13 5217.7 58.3 21.77701 20.86289 3.688453 30/9/13 5420.3 61.74 23.94198 21.79624 3.844303 31/10/13 5314.3 63.99 22.56942 21.50087 3.755246 30/11/13 5353.1 66.06 23.43381 22.06193 3.896254 31/12/13 5205.1 68.18 21.90694 21.04004 3.814618 31/1/14 5415.4 65.64 23.36837 21.51595 3.747824 28/2/14 5403 66.84 24.03729 21.20243 3.877173 31/3/14 5470.8 63.55 25.06247 21.98485 3.984024 30/4/14 5473.8 61.7 24.34993 22.31941 4.075611 31/5/14 5382 59.3 24.85111 21.53699 3.976392 30/6/14 5623.1 59.31 25.32071 22.65917 4.190094 31/7/14 5624.6 66.38 24.9182 22.29369 4.24352 31/8/14 5296.8 62.63 23.04729 22.42818 4.153627 30/9/14 5505 59.58 24.97038 23.48155 4.412249 31/10/14 5298.1 60.41 23.79267 21.65335 4.459271 30/11/14 5388.6 59.1 24.61535 21.98998 4.678707 31/12/14 5551.6 58 25.31339 22.9756 5.09407 31/1/15 5898.5 57.56 27.10834 23.1127 4.992188 28/2/15 5861.9 64.41 28.10554 23.80803 5.060349 31/3/15 5773.7 57.23 26.07279 23.67265 4.996192 30/4/15 5774.9 57.15 25.45914 23.64556 4.988173 31/5/15 5451.2 58.2 25.36044 21.13805 4.924016 30/6/15 5681.7 53.75 25.73849 22.99026 5.204701 31/7/15 5222.1 52.86 21.99743 22.02082 4.627292 31/8/15 5058.6 50.29 21.32798 22.10167 4.620785 30/9/15 5288.6 48.6 21.43036 22.20873 4.447815 31/10/15 5218.2 50.65 21.3831 21.46487 4.414868 30/11/15 5344.6 45.91 22.81056 23.44851 4.620785 31/12/15 5056.6 44.71 19.74792 23.76406 4.637259 31/1/16 4947.9 39.13 18.29418 22.02842 4.324265 29/2/16 5151.8 40.28 19.15989 24.12315 4.390159 31/3/16 5316 42.69 19.82142 24.89136 4.549177 30/4/16 5447.8 51.55 20.80963 23.64598 4.744384 31/5/16 5310.4 44.69 20.34638 23.33752 4.718923 30/6/16 5644 45.5 21.79728 24.9845 4.897155 31/7/16 5529.4 49.56 22.69144 24.69935 4.464305 31/8/16 5525.2 47.6 23.30722 26.4623 4.524136 30/9/16 5402.4 51.61 23.49281 24.60811 4.34946 31/10/16 5502.4 54.18 23.96519 25.07016 4.410597 30/11/16 5719.1 57.75 26.40722 25.28618 4.454266 31/12/16 5675 59.9 25.42628 24.15813 4.366928 31/1/17 5761 66.68 26.8239 25.63424 4.209718 28/2/17 5903.8 61.99 27.62254 27.98426 4.069976 31/3/17 5947.6 60.46 28.43854 26.69895 3.808148 30/4/17 5761.3 60.44 24.31513 26.51268 3.970581 31/5/17 5764 62.81 25.59965 24.91076 3.880341 30/6/17 5773.9 63.27 26.41078 25.28949 3.699859 31/7/17 5776.3 65.79 26.20577 26.46303 3.311826 31/8/17 5744.9 67.84 26.38404 26.71963 3.281864 30/9/17 5976.4 66.53 26.66927 27.0235 3.328882 31/10/17 6057.2 69.45 25.3679 28.39412 3.225442 30/11/17 6167.3 70.95 26.31148 28.71733 3.413514 31/12/17 6146.5 75.81 26.165 28.32299 3.451129 31/1/18 6117.3 76.85 26.59529 26.71963 3.150213 28/2/18 5868.9 81.16 24.59034 27.81488 3.017585 31/3/18 6071.6 72.7 24.57203 29.29397 3.056025 30/4/18 6123.5 79.86 24.91077 30.49197 2.69084 31/5/18 6289.7 82.97 26.60997 33.03524 2.517857 30/6/18 6366.2 83.44 27.60878 33.1021 2.72928 31/7/18 6427.8 81.2 27.79724 34.43402 2.979144 31/8/18 6325.5 72.74 26.55343 34.4696 3.139685 30/9/18 5913.3 78.76 24.4333 32.23617 3.03142 31/10/18 5749.3 76.4 25.25308 30.69307 2.883785 30/11/18 5709.4 73.28 23.74844 31.30518 2.805047 31/12/18 5937.3 78.47 24.30186 31.29546 3.060946 31/1/19 6252.7 87.05 27.18546 32.23792 3.080631 28/2/19 6261.7 96.16 25.27276 34.65 3.32 31/3/19 6418.4 97.91 26.40873 36.01 3.38 30/4/19 6491.8 95.37 27.06895 37.05 3.65 31/5/19 6699.2 100.3 28.21 36.16 3.85 Using historical prices of the Australian All Ordinaries Index (AORD) and...

Finance