m1 =
m              Â
m2 = m
before collision
speeds
u1x = 1.8
i                  Â
u2x = -1.1 i
u1y =
0Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
u2y = 0
after collision
v1x =
v1*costheta                    Â
v2x = 0
v1y =
v1*sintheta                   Â
v2y = 1.49j
from momentum conservation
along x axis
Pix = Pfx
m1*u1x + m2*u2x = m1*v1x + m2*v2x
m*1.8 - m*1.1 = m*v1x + m*0
v1x = 0.7 m/s
along y
Piy = Pfy
m1*u1y + m2*u2y = m1*v1y + m2*v2y
0 = m*v1y + m*1.49
v1y = -1.49 m/s
(a)
speed v1 = sqrt(v1x^2+v1y^2) = sqrt(0.7^2+1.49^2) = 1.65
m/s
(b)
direction = tan^-1(v1y/v1x) = 64.8 degrees south of
east