Using ideal gas law;PV=nRT; P=nRT/V;Therefore
P=406312.3253Pa;
energy transferred into the gas from the hot
reservoir=nRTH*ln(3.38/0.94)=1494430.595J;
energy transferred out of the gas into the cold
reservoir=nRTc*ln(3.38/0.94)=488779.9316J;
Work done=Heat supplied-Heat
rejected=1494430.595-488779.9316=1005650.663J;
Efficiency=work done/heat supplied =
1005650.663/1494430.595=67.29%;
Carnot efficiency = 1- Tc/TH=1-(348/1064)=67.29%;
Q2;
Using PV=nRT;
T1=36.85K; T2=120.62K; T3=770.09K; T4=235.30K;
Using first law of Thermodynamics:Energy supplied(Q)=Change in
internal Energy(U)+Work done by the system(W);
That is:Q=U+W;
U=nCv*(change in temperature);
W=P*(change in volume);
U1=584982.664J; W1=0; Q1=584982.664J;
U2=4535378.904J; W2=3024000J; Q2=7559378.904J;
U3=-3734545.53J; W3=0; Q3=-3734545.53J
U4=-1385816.04J W4=-924000J; Q4=-2309816.04J;
energy transferred into the gas from the hot reservoir=sum of
+ve Q's=8144361.568J;
energy transferred out of the gas into the cold reservoir=sum of
-ve Q's= 6044361.57J;
Work done = W1+W2+W3+W4=2100000J;
Efficiency = Work done/Energy
supplied=2100000/8144361.568=25.78%