Given that y = 88.721+ -0.043x
x = 1970 then
y = 88.721+ -0.043 ( 1970 ) = 4.0
x = 1989 then
y = 88.721+ -0.043 ( 1989 ) = 3.2
Now the new data is
Year |
Welfare family size |
1969 |
4 |
1973 |
3.6 |
1975 |
3.2 |
1979 |
3 |
1983 |
3 |
1988 |
3 |
1991 |
2.9 |
1970 |
4 |
1989 |
3.2 |
for above data regression output is
SUMMARY OUTPUT |
|
|
|
|
|
|
|
|
|
|
|
|
|
Regression Statistics |
|
|
|
|
|
Multiple R |
0.834705358 |
|
|
|
|
|
R
Square |
0.696733035 |
|
|
|
|
|
Adjusted R Square |
0.653409183 |
|
|
|
|
|
Standard Error |
0.256241497 |
|
|
|
|
|
Observations |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
Regression |
1 |
1.055937622 |
1.055938 |
16.08197 |
0.005122786 |
|
Residual |
7 |
0.459617934 |
0.06566 |
|
|
|
Total |
8 |
1.515555556 |
|
|
|
|
|
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Intercept |
88.52892788 |
21.24748909 |
4.16656 |
0.004207 |
38.28659991 |
138.77126 |
X
Variable 1 |
-0.043040936 |
0.010732775 |
-4.01023 |
0.005123 |
-0.068419916 |
-0.017662 |
from above output now regression equation is
Welfare family size = 88.529 + (- 0.043 year )