The Amount of each rent = $87,732.95
Interest revenue in the year 2020 (i.e.for first 2 periods) =
$36000+$33672=$69,672
(Explanation to the answer is given below)
Period |
Payment |
Principal Part |
Interest Part |
Balance |
1 |
$87,732.95 |
$
51,732.95 |
$
36,000.00 |
$748,267.05 |
2 |
$87,732.95 |
$
54,060.93 |
$
33,672.02 |
$694,206.12 |
3 |
$87,732.95 |
$
56,493.67 |
$
31,239.28 |
$637,712.45 |
4 |
$87,732.95 |
$
59,035.89 |
$
28,697.06 |
$578,676.56 |
5 |
$87,732.95 |
$
61,692.51 |
$
26,040.44 |
$516,984.05 |
6 |
$87,732.95 |
$
64,468.67 |
$
23,264.28 |
$452,515.38 |
7 |
$87,732.95 |
$
67,363.76 |
$
20,369.19 |
$385,145.62 |
8 |
$87,732.95 |
$
70,401.40 |
$
17,331.55 |
$314,744.22 |
9 |
$87,732.95 |
$
73,569.46 |
$
14,163.49 |
$241,174.76 |
10 |
$87,732.95 |
$
76,880.09 |
$
10,852.86 |
$164,294.67 |
11 |
$87,732.95 |
$
80,339.69 |
$ 7,393.26 |
$83,954.98 |
12 |
$87,732.95 |
$
83,954.98 |
$ 3,777.97 |
($0.00) |
The monthly payment is derived by using the formula EMI = [P x R
x (1+R)^N]/[(1+R)^N-1]
=>EMI= 800000*4.5%*((1+4.5%)^12)/((1+4.5%)^12-1)
=>$87,732.95